SLAM Hive: A SLAM Evaluation Benchmark System

Wiki Link
Mapping Task Configuration 282 Details Information

mapping task ID: 622 |
  
mapping task ID: 3286 |
  
mapping task ID: 3336 |
  
mapping task ID: 3385 |
  
mapping task ID: 3433 |
  


Algorihtm & Dataset

Algorithm Selection

Algorithm ImageTag: vins-mono
Algorihtm name: vins-mono

Dataset Selection:

Dataset Sequence Name: MH_01_easy
Dataset name: euroc


Configuration Information

Mapping Task Configuration Name: vins-mono+MH_01_easy
Mapping Task Configuration Description:

Algorithm: VINS-Mono
Dataset: MH_01_easy
Use default parameter
Environment: Desktop (Memory: 32GB; CPU: Intel® Core™ i7-7700 CPU @ 3.60GHz × 8; Disk: 1TB)    


Corresponding Parameters Infomation

ID Name Description parameter Type Algo/Dataset Name Key Value Type Value
351 general+image_width
image data size.
Dataset euroc image_width int 752
352 general+image_height
image data size.
Dataset euroc image_height int 480
355 VINS+max_cnt
max_cnt
Algorithm vins-mono max_cnt int 150
356 VINS+min_dist
min_dist
Algorithm vins-mono min_dist int 30
357 VINS+freq
frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image
Algorithm vins-mono freq int 10
358 VINS+F_threshold
ransac threshold (pixel)
Algorithm vins-mono F_threshold float 1.0
359 VINS+equalize
if image is too dark or light, trun on equalize to find enough features
Algorithm vins-mono equalize int 1
360 VINS+max_solver_time
max solver itration time (ms), to guarantee real time
Algorithm vins-mono max_solver_time float 0.04
361 VINS+max_num_iterations
max solver itration time (ms), to guarantee real time
Algorithm vins-mono max_num_iterations int 8
362 VINS+keyframe_parallax
keyframe selection threshold (pixel)
Algorithm vins-mono keyframe_parallax float 10.0
363 VINS+loop_closure
start loop closure
Algorithm vins-mono loop_closure int 1
364 VINS+fast_relocalization
useful in real-time and large project
Algorithm vins-mono fast_relocalization int 0
436 general+fx
intrinsic(pinhole)
Dataset euroc fx float 461.6
437 general+fy
intrinsic(pinhole)
Dataset euroc fy float 460.3
438 general+cx
intrinsic(pinhole)
Dataset euroc cx float 363.0
439 general+cy
intrinsic(pinhole)
Dataset euroc cy float 248.1
440 general+k1
intrinsic(pinhole mei)
Dataset euroc k1 float -0.2917
441 general+k2
intrinsic(pinhole mei)
Dataset euroc k2 float 0.08228
442 general+p1
intrinsic(pinhole mei)
Dataset euroc p1 float 5.333e-05
443 general+p2
intrinsic(pinhole mei)
Dataset euroc p2 float -0.0001578
476 general+NoiseGyro
NoiseGyro
Dataset euroc gyr_n float 0.004
477 general+NoiseAcc
NoiseAcc
Dataset euroc acc_n float 0.08
478 general+GyroWalk
GyroWalk
Dataset euroc gyr_w float 2e-06
479 general+AccWalk
AccWalk
Dataset euroc acc_w float 4e-05
482 VINS+show_track
publish tracking image as topic
Algorithm vins-mono show_track int 1
483 VINS+fisheye
fisheye
Algorithm vins-mono fisheye int 0
484 VINS+load_previous_pose_graph
start loop closure
Algorithm vins-mono load_previous_pose_graph int 0
485 VINS+save_image
save image in pose graph for visualization prupose; you can close this function by setting 0
Algorithm vins-mono save_image int 1
486 VINS+visualize_imu_forward
visualization parameters
Algorithm vins-mono visualize_imu_forward int 0
487 VINS+visualize_camera_size
visualization parameters
Algorithm vins-mono visualize_camera_size float 0.4
488 VINS+model_type
camera calibration
Dataset euroc model_type string PINHOLE
489 VINS+camera_name
camera calibration
Dataset euroc camera_name string camera
490 VINS+estimate_extrinsic
Extrinsic parameter between IMU and Camera.
Dataset euroc estimate_extrinsic int 0
491 VINS+extrinsicRotation
Extrinsic parameter between IMU and Camera.
Dataset matrix euroc extrinsicRotation matrix [0.0148655429818, -0.999880929698, 0.00414029679422, 0.999557249008, 0.0149672133247, 0.025715529948, -0.0257744366974, 0.00375618835797, 0.999660727178]
492 VINS+extrinsicTranslation
Extrinsic parameter between IMU and Camera.
Dataset matrix euroc extrinsicTranslation matrix [-0.0216401454975, 0.064676986768, 0.00981073058949]
493 VINS+estimate_td
online estimate time offset between camera and imu
Dataset euroc estimate_td int 0
494 VINS+td
initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock)
Dataset euroc td float 0.0
495 VINS+rolling_shutter
0: global shutter camera, 1: rolling shutter camera
Dataset euroc rolling_shutter int 0
496 VINS+rolling_shutter_tr
unit: s. rolling shutter read out time per frame (from data sheet).
Dataset euroc rolling_shutter_tr int 0
497 VINS+image_topic
remap
Dataset euroc image_topic string /cam0/image_raw
498 VINS+imu_topic
remap
Dataset euroc imu_topic string /imu0
505 general+g_norm
gravity
Dataset euroc g_norm float 9.81007
350 general+image_frequency
frequency of image data
Dataset euroc image_frequency int 20
575 general+imu_frequency
frequency of imu data
Dataset euroc imu_frequency int 200