Wiki Link
Custom Analysis Group Creation
|
|
group_name:
group_description:
evaluation_form:
group_name: Simple_example # custom analysis task name.
group_description: xxxxxx # some simple description of the task.
evaluation_form:
# you should choose 0-3 based on your configurations.
algorithm_dataset_type: 0 # 0: same_algorithm_same_dataset. can choose: 1 2 3 4 6 7 8
# 1: different_algorithm_same dataset can choose: 1 2 3 4 6 7
# 2: same_algorithm_different_dataset can choose: 3 6 7
# 3: different_algorithm_different_dataset. can choose: 3 6 7
1_trajectory_comparison: # compare the trajectories.
choose: 0 # choose this analysis (0) or not (1)
2_accuracy_metrics_comparison: # compare the ATE and RPE metrics of trajectories
choose: 0
3_accuracy_metrics_comparison: # generate a histogram of different (algorithm + dataset) group.
choose: 0
calculate_method: 1 # 0: average (because one algo + one dataset may include different configs)
# 1: choose the best one
# then for each (algorithm, dataset), get one configuration, then calculate the average value
metric: ate_rmse # eg: ATE-RMSE
algorithm_id: [12] # choose the algorithms by ID
dataset_id: [2] # choose the dataset sequences by ID
4_usage_metrics_comparison: # compare the CPU and Memory usage.
choose: 0
6_scatter_diagram: # generate a scatter to show the metrics of different configurations' task.
choose: 1
x-axis: general+image_frequency # X axis's metric
y-axis: ate_mean # Y axis's metric
# You can choose: 1) Evo metrics; 2) Resource Usage metrics; 3) Configuration parameters (provide the parameter template's name; and you should choose one that all configurations use this template).
7_3d_scatter_diagram: # 3D version of the scatter
choose: 1
x-axis: general+image_width
y-axis: general+imu_frequency
z-axis: ate_mean
# For the scatter and 3D scatter, when you create a analysis, you can also use this task to create more scatters with other axis's metrics; And you can also see the online dynamic scatter on the webpage.
8_repeatability_test: # Test one configuration's stability.
choose: 0 # If you use this analysis, you should only choose one configuration.
metric: ate_mean
#
configuration_choose: # implicit limitation:chosen configs has running task and evaluation
# three ways to choose confg
configuration_id: [] # provide configurations id
comb_configuration_id: [72] # provide combination configurations id (Equal to choose all configurations ID contained by these comb configs).
limitation_rules: # by a rule;
algorithm_id: [12, 13]
dataset_id: [2,3]
parameters_value: ["nFeatures < 4000"]
evaluation_value:
ate_rmse_nolimitation: 1 # 0 or 1
ate_rmse_minimum: # if just minimum and no maximum, can just fill the minimum
ate_rmse_maximum:
ate_mean_nolimitation: 1 # 0 or 1
ate_mean_minimum:
ate_mean_maximum:
ate_median_nolimitation: 1 # 0 or 1
ate_median_minimum:
ate_median_maximum:
ate_std_nolimitation: 1 # 0 or 1
ate_std_minimum:
ate_std_maximum:
ate_min_nolimitation: 1 # 0 or 1
ate_min_minimum:
ate_min_maximum:
ate_max_nolimitation: 1 # 0 or 1
ate_max_minimum:
ate_max_maximum:
ate_sse_nolimitation: 1 # 0 or 1
ate_sse_minimum:
ate_sse_maximum:
rpe_rmse_nolimitation: 1 # 0 or 1
rpe_rmse_minimum: # if just minimum and no maximum, can just fill the minimum
rpe_rmse_maximum:
rpe_mean_nolimitation: 1 # 0 or 1
rpe_mean_minimum:
rpe_mean_maximum:
rpe_median_nolimitation: 1 # 0 or 1
rpe_median_minimum:
rpe_median_maximum:
rpe_std_nolimitation: 1 # 0 or 1
rpe_std_minimum:
rpe_std_maximum:
rpe_min_nolimitation: 1 # 0 or 1
rpe_min_minimum:
rpe_min_maximum:
rpe_max_nolimitation: 1 # 0 or 1
rpe_max_minimum:
rpe_max_maximum:
rpe_sse_nolimitation: 1 # 0 or 1
rpe_sse_minimum:
rpe_sse_maximum:
cpu_max_nolimitation: 1 # 0 or 1
cpu_max_minimum:
cpu_max_maximum:
cpu_mean_nolimitation: 1 # 0 or 1
cpu_mean_minimum:
cpu_mean_maximum:
ram_max_nolimitation: 1 # 0 or 1
ram_max_minimum:
ram_max_maximum:
combination_rule: # how to combine three ways:U - union set; I - intersection set; complement set;
first_one: [1]
first_rule: ["U"]
second_one: [0,2]
second_rule: ["I"] # (1) - (0 I 2)
|