Wiki Link
Custom Analysis Group Creation
|
group_name: group_description: evaluation_form: group_name: Simple_example # custom analysis task name. group_description: xxxxxx # some simple description of the task. evaluation_form: # you should choose 0-3 based on your configurations. algorithm_dataset_type: 0 # 0: same_algorithm_same_dataset. can choose: 1 2 3 4 6 7 8 # 1: different_algorithm_same dataset can choose: 1 2 3 4 6 7 # 2: same_algorithm_different_dataset can choose: 3 6 7 # 3: different_algorithm_different_dataset. can choose: 3 6 7 1_trajectory_comparison: # compare the trajectories. choose: 0 # choose this analysis (0) or not (1) 2_accuracy_metrics_comparison: # compare the ATE and RPE metrics of trajectories choose: 0 3_accuracy_metrics_comparison: # generate a histogram of different (algorithm + dataset) group. choose: 0 calculate_method: 1 # 0: average (because one algo + one dataset may include different configs) # 1: choose the best one # then for each (algorithm, dataset), get one configuration, then calculate the average value metric: ate_rmse # eg: ATE-RMSE algorithm_id: [12] # choose the algorithms by ID dataset_id: [2] # choose the dataset sequences by ID 4_usage_metrics_comparison: # compare the CPU and Memory usage. choose: 0 6_scatter_diagram: # generate a scatter to show the metrics of different configurations' task. choose: 1 x-axis: general+image_frequency # X axis's metric y-axis: ate_mean # Y axis's metric # You can choose: 1) Evo metrics; 2) Resource Usage metrics; 3) Configuration parameters (provide the parameter template's name; and you should choose one that all configurations use this template). 7_3d_scatter_diagram: # 3D version of the scatter choose: 1 x-axis: general+image_width y-axis: general+imu_frequency z-axis: ate_mean # For the scatter and 3D scatter, when you create a analysis, you can also use this task to create more scatters with other axis's metrics; And you can also see the online dynamic scatter on the webpage. 8_repeatability_test: # Test one configuration's stability. choose: 0 # If you use this analysis, you should only choose one configuration. metric: ate_mean # configuration_choose: # implicit limitation:chosen configs has running task and evaluation # three ways to choose confg configuration_id: [] # provide configurations id comb_configuration_id: [72] # provide combination configurations id (Equal to choose all configurations ID contained by these comb configs). limitation_rules: # by a rule; algorithm_id: [12, 13] dataset_id: [2,3] parameters_value: ["nFeatures < 4000"] evaluation_value: ate_rmse_nolimitation: 1 # 0 or 1 ate_rmse_minimum: # if just minimum and no maximum, can just fill the minimum ate_rmse_maximum: ate_mean_nolimitation: 1 # 0 or 1 ate_mean_minimum: ate_mean_maximum: ate_median_nolimitation: 1 # 0 or 1 ate_median_minimum: ate_median_maximum: ate_std_nolimitation: 1 # 0 or 1 ate_std_minimum: ate_std_maximum: ate_min_nolimitation: 1 # 0 or 1 ate_min_minimum: ate_min_maximum: ate_max_nolimitation: 1 # 0 or 1 ate_max_minimum: ate_max_maximum: ate_sse_nolimitation: 1 # 0 or 1 ate_sse_minimum: ate_sse_maximum: rpe_rmse_nolimitation: 1 # 0 or 1 rpe_rmse_minimum: # if just minimum and no maximum, can just fill the minimum rpe_rmse_maximum: rpe_mean_nolimitation: 1 # 0 or 1 rpe_mean_minimum: rpe_mean_maximum: rpe_median_nolimitation: 1 # 0 or 1 rpe_median_minimum: rpe_median_maximum: rpe_std_nolimitation: 1 # 0 or 1 rpe_std_minimum: rpe_std_maximum: rpe_min_nolimitation: 1 # 0 or 1 rpe_min_minimum: rpe_min_maximum: rpe_max_nolimitation: 1 # 0 or 1 rpe_max_minimum: rpe_max_maximum: rpe_sse_nolimitation: 1 # 0 or 1 rpe_sse_minimum: rpe_sse_maximum: cpu_max_nolimitation: 1 # 0 or 1 cpu_max_minimum: cpu_max_maximum: cpu_mean_nolimitation: 1 # 0 or 1 cpu_mean_minimum: cpu_mean_maximum: ram_max_nolimitation: 1 # 0 or 1 ram_max_minimum: ram_max_maximum: combination_rule: # how to combine three ways:U - union set; I - intersection set; complement set; first_one: [1] first_rule: ["U"] second_one: [0,2] second_rule: ["I"] # (1) - (0 I 2) |