customanalysis:example
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| customanalysis:example [2024/07/23 12:22] – liuxzh12023 | customanalysis:example [2024/07/29 11:19] (current) – liuxzh12023 | ||
|---|---|---|---|
| Line 83: | Line 83: | ||
| dataset_id: null | dataset_id: null | ||
| evaluation_value: | evaluation_value: | ||
| - | | + | |
| ate_max_minimum: | ate_max_minimum: | ||
| ate_max_nolimitation: | ate_max_nolimitation: | ||
| - | | + | |
| ate_mean_minimum: | ate_mean_minimum: | ||
| ate_mean_nolimitation: | ate_mean_nolimitation: | ||
| - | | + | |
| ate_median_minimum: | ate_median_minimum: | ||
| ate_median_nolimitation: | ate_median_nolimitation: | ||
| - | | + | |
| ate_min_minimum: | ate_min_minimum: | ||
| ate_min_nolimitation: | ate_min_nolimitation: | ||
| - | | + | |
| ate_rmse_minimum: | ate_rmse_minimum: | ||
| ate_rmse_nolimitation: | ate_rmse_nolimitation: | ||
| - | | + | |
| ate_sse_minimum: | ate_sse_minimum: | ||
| ate_sse_nolimitation: | ate_sse_nolimitation: | ||
| - | | + | |
| ate_std_minimum: | ate_std_minimum: | ||
| ate_std_nolimitation: | ate_std_nolimitation: | ||
| - | | + | |
| cpu_max_minimum: | cpu_max_minimum: | ||
| cpu_max_nolimitation: | cpu_max_nolimitation: | ||
| - | | + | |
| cpu_mean_minimum: | cpu_mean_minimum: | ||
| cpu_mean_nolimitation: | cpu_mean_nolimitation: | ||
| - | | + | |
| ram_max_minimum: | ram_max_minimum: | ||
| ram_max_nolimitation: | ram_max_nolimitation: | ||
| - | | + | |
| rpe_max_minimum: | rpe_max_minimum: | ||
| rpe_max_nolimitation: | rpe_max_nolimitation: | ||
| - | | + | |
| rpe_mean_minimum: | rpe_mean_minimum: | ||
| rpe_mean_nolimitation: | rpe_mean_nolimitation: | ||
| - | | + | |
| rpe_median_minimum: | rpe_median_minimum: | ||
| rpe_median_nolimitation: | rpe_median_nolimitation: | ||
| - | | + | |
| rpe_min_minimum: | rpe_min_minimum: | ||
| rpe_min_nolimitation: | rpe_min_nolimitation: | ||
| - | | + | |
| rpe_rmse_minimum: | rpe_rmse_minimum: | ||
| rpe_rmse_nolimitation: | rpe_rmse_nolimitation: | ||
| - | | + | |
| rpe_sse_minimum: | rpe_sse_minimum: | ||
| rpe_sse_nolimitation: | rpe_sse_nolimitation: | ||
| - | | + | |
| rpe_std_minimum: | rpe_std_minimum: | ||
| rpe_std_nolimitation: | rpe_std_nolimitation: | ||
| Line 190: | Line 190: | ||
| 6 image resolution - totally 1500 configurations | 6 image resolution - totally 1500 configurations | ||
| group_name: Paper_Vision_SLAM_Image_Exploration_Experiment | group_name: Paper_Vision_SLAM_Image_Exploration_Experiment | ||
| + | </ | ||
| + | |||
| + | ------ | ||
| + | |||
| + | |||
| + | === Paper_3_accuracy_metrics_comparison_ATE_RMSE_Experiment === | ||
| + | |||
| + | Explanation: | ||
| + | |||
| + | This analysis task is to calculate the metric of some configurations | ||
| + | |||
| + | 10 modes | ||
| + | 5 dataset sequences | ||
| + | totally: 50 | ||
| + | |||
| + | This YAML file's metric is "ATE RMSE", you can also change to select other metrics. | ||
| + | |||
| + | <file yaml> | ||
| + | configuration_choose: | ||
| + | comb_configuration_id: | ||
| + | combination_rule: | ||
| + | first_one: | ||
| + | - 0 | ||
| + | first_rule: | ||
| + | - I | ||
| + | second_one: | ||
| + | - 2 | ||
| + | - 1 | ||
| + | second_rule: | ||
| + | - U | ||
| + | configuration_id: | ||
| + | - 274 | ||
| + | - 275 | ||
| + | - 276 | ||
| + | - 277 | ||
| + | - 278 | ||
| + | - 279 | ||
| + | - 282 | ||
| + | - 285 | ||
| + | - 287 | ||
| + | - 288 | ||
| + | - 706 | ||
| + | - 1735 | ||
| + | - 1585 | ||
| + | - 722 | ||
| + | - 754 | ||
| + | - 762 | ||
| + | - 1885 | ||
| + | - 2040 | ||
| + | - 2190 | ||
| + | - 2340 | ||
| + | - 1765 | ||
| + | - 1615 | ||
| + | - 778 | ||
| + | - 794 | ||
| + | - 826 | ||
| + | - 834 | ||
| + | - 1915 | ||
| + | - 2070 | ||
| + | - 2220 | ||
| + | - 2370 | ||
| + | - 1795 | ||
| + | - 1645 | ||
| + | - 850 | ||
| + | - 866 | ||
| + | - 882 | ||
| + | - 890 | ||
| + | - 1945 | ||
| + | - 2100 | ||
| + | - 2250 | ||
| + | - 2400 | ||
| + | - 1825 | ||
| + | - 1675 | ||
| + | - 906 | ||
| + | - 978 | ||
| + | - 954 | ||
| + | - 962 | ||
| + | - 1975 | ||
| + | - 2130 | ||
| + | - 2280 | ||
| + | - 2430 | ||
| + | limitation_rules: | ||
| + | algorithm_id: | ||
| + | dataset_id: null | ||
| + | evaluation_value: | ||
| + | ate_max_maximum: | ||
| + | ate_max_minimum: | ||
| + | ate_max_nolimitation: | ||
| + | ate_mean_maximum: | ||
| + | ate_mean_minimum: | ||
| + | ate_mean_nolimitation: | ||
| + | ate_median_maximum: | ||
| + | ate_median_minimum: | ||
| + | ate_median_nolimitation: | ||
| + | ate_min_maximum: | ||
| + | ate_min_minimum: | ||
| + | ate_min_nolimitation: | ||
| + | ate_rmse_maximum: | ||
| + | ate_rmse_minimum: | ||
| + | ate_rmse_nolimitation: | ||
| + | ate_sse_maximum: | ||
| + | ate_sse_minimum: | ||
| + | ate_sse_nolimitation: | ||
| + | ate_std_maximum: | ||
| + | ate_std_minimum: | ||
| + | ate_std_nolimitation: | ||
| + | cpu_max_maximum: | ||
| + | cpu_max_minimum: | ||
| + | cpu_max_nolimitation: | ||
| + | cpu_mean_maximum: | ||
| + | cpu_mean_minimum: | ||
| + | cpu_mean_nolimitation: | ||
| + | ram_max_maximum: | ||
| + | ram_max_minimum: | ||
| + | ram_max_nolimitation: | ||
| + | rpe_max_maximum: | ||
| + | rpe_max_minimum: | ||
| + | rpe_max_nolimitation: | ||
| + | rpe_mean_maximum: | ||
| + | rpe_mean_minimum: | ||
| + | rpe_mean_nolimitation: | ||
| + | rpe_median_maximum: | ||
| + | rpe_median_minimum: | ||
| + | rpe_median_nolimitation: | ||
| + | rpe_min_maximum: | ||
| + | rpe_min_minimum: | ||
| + | rpe_min_nolimitation: | ||
| + | rpe_rmse_maximum: | ||
| + | rpe_rmse_minimum: | ||
| + | rpe_rmse_nolimitation: | ||
| + | rpe_sse_maximum: | ||
| + | rpe_sse_minimum: | ||
| + | rpe_sse_nolimitation: | ||
| + | rpe_std_maximum: | ||
| + | rpe_std_minimum: | ||
| + | rpe_std_nolimitation: | ||
| + | parameters_value: | ||
| + | evaluation_form: | ||
| + | 1_trajectory_comparison: | ||
| + | choose: 0 | ||
| + | 2_accuracy_metrics_comparison: | ||
| + | choose: 0 | ||
| + | 3_accuracy_metrics_comparison: | ||
| + | algorithm_id: | ||
| + | - 2 | ||
| + | - 3 | ||
| + | - 5 | ||
| + | - 6 | ||
| + | - 7 | ||
| + | - 8 | ||
| + | - 9 | ||
| + | - 10 | ||
| + | - 11 | ||
| + | - 12 | ||
| + | calculate_method: | ||
| + | choose: 1 | ||
| + | dataset_id: | ||
| + | - 2 | ||
| + | - 3 | ||
| + | - 5 | ||
| + | - 6 | ||
| + | - 7 | ||
| + | metric: ate_rmse # change here to change metric | ||
| + | 4_usage_metrics_comparison: | ||
| + | choose: 0 | ||
| + | 5_scatter_diagram: | ||
| + | choose: 0 | ||
| + | x-axis: ate_mean | ||
| + | y-axis: cpu_mean | ||
| + | 6_scatter_diagram: | ||
| + | choose: 0 | ||
| + | x-axis: null | ||
| + | y-axis: null | ||
| + | 7_3d_scatter_diagram: | ||
| + | choose: 0 | ||
| + | x-axis: general+image_width | ||
| + | y-axis: general+imu_frequency | ||
| + | 8_repeatability_test: | ||
| + | choose: 0 | ||
| + | metric: ate_mean | ||
| + | algorithm_dataset_type: | ||
| + | group_description: | ||
| + | group_name: Paper_3_accuracy_metrics_comparison_ATE_RMSE_Experiment | ||
| + | </ | ||
| + | |||
| + | ------ | ||
| + | |||
| + | === Paper_1_2_4_Lidar_SLAM_Trajectory_Evo_Usage_Experiment === | ||
| + | |||
| + | Explanation: | ||
| + | |||
| + | This analysis task is to compare some Lidar based SLAM algorithms in trajectory, Evo metrics and CPU and RAM usage. | ||
| + | |||
| + | 6 modes | ||
| + | 1 dataset sequences | ||
| + | totally: 6 | ||
| + | |||
| + | note: 1) Don't select too many configurations to draw them in one diagram. 2) If your selected configurations contain failed trajectories, | ||
| + | <file yaml> | ||
| + | configuration_choose: | ||
| + | comb_configuration_id: | ||
| + | - 5 | ||
| + | combination_rule: | ||
| + | first_one: | ||
| + | - 0 | ||
| + | first_rule: | ||
| + | - I | ||
| + | second_one: | ||
| + | - 2 | ||
| + | - 1 | ||
| + | second_rule: | ||
| + | - I | ||
| + | configuration_id: | ||
| + | |||
| + | limitation_rules: | ||
| + | algorithm_id: | ||
| + | - 12 | ||
| + | - 11 | ||
| + | - 10 | ||
| + | dataset_id: | ||
| + | - 15 | ||
| + | evaluation_value: | ||
| + | ate_max_maximum: | ||
| + | ate_max_minimum: | ||
| + | ate_max_nolimitation: | ||
| + | ate_mean_maximum: | ||
| + | ate_mean_minimum: | ||
| + | ate_mean_nolimitation: | ||
| + | ate_median_maximum: | ||
| + | ate_median_minimum: | ||
| + | ate_median_nolimitation: | ||
| + | ate_min_maximum: | ||
| + | ate_min_minimum: | ||
| + | ate_min_nolimitation: | ||
| + | ate_rmse_maximum: | ||
| + | ate_rmse_minimum: | ||
| + | ate_rmse_nolimitation: | ||
| + | ate_sse_maximum: | ||
| + | ate_sse_minimum: | ||
| + | ate_sse_nolimitation: | ||
| + | ate_std_maximum: | ||
| + | ate_std_minimum: | ||
| + | ate_std_nolimitation: | ||
| + | cpu_max_maximum: | ||
| + | cpu_max_minimum: | ||
| + | cpu_max_nolimitation: | ||
| + | cpu_mean_maximum: | ||
| + | cpu_mean_minimum: | ||
| + | cpu_mean_nolimitation: | ||
| + | ram_max_maximum: | ||
| + | ram_max_minimum: | ||
| + | ram_max_nolimitation: | ||
| + | rpe_max_maximum: | ||
| + | rpe_max_minimum: | ||
| + | rpe_max_nolimitation: | ||
| + | rpe_mean_maximum: | ||
| + | rpe_mean_minimum: | ||
| + | rpe_mean_nolimitation: | ||
| + | rpe_median_maximum: | ||
| + | rpe_median_minimum: | ||
| + | rpe_median_nolimitation: | ||
| + | rpe_min_maximum: | ||
| + | rpe_min_minimum: | ||
| + | rpe_min_nolimitation: | ||
| + | rpe_rmse_maximum: | ||
| + | rpe_rmse_minimum: | ||
| + | rpe_rmse_nolimitation: | ||
| + | rpe_sse_maximum: | ||
| + | rpe_sse_minimum: | ||
| + | rpe_sse_nolimitation: | ||
| + | rpe_std_maximum: | ||
| + | rpe_std_minimum: | ||
| + | rpe_std_nolimitation: | ||
| + | parameters_value: | ||
| + | - nFeatures < 4000 | ||
| + | evaluation_form: | ||
| + | 1_trajectory_comparison: | ||
| + | choose: 1 | ||
| + | 2_accuracy_metrics_comparison: | ||
| + | choose: 1 | ||
| + | 3_accuracy_metrics_comparison: | ||
| + | algorithm_id: | ||
| + | - 2 | ||
| + | - 5 | ||
| + | calculate_method: | ||
| + | choose: 0 | ||
| + | dataset_id: | ||
| + | - 2 | ||
| + | - 13 | ||
| + | metric: ate_rmse | ||
| + | 4_usage_metrics_comparison: | ||
| + | choose: 1 | ||
| + | 6_scatter_diagram: | ||
| + | choose: 0 | ||
| + | x-axis: cpu_mean | ||
| + | y-axis: ate_mean | ||
| + | 7_3d_scatter_diagram: | ||
| + | choose: 0 | ||
| + | x-axis: null | ||
| + | y-axis: null | ||
| + | z-axis: null | ||
| + | 8_repeatability_test: | ||
| + | choose: 0 | ||
| + | metric: null | ||
| + | algorithm_dataset_type: | ||
| + | group_description: | ||
| + | group_name: Paper_1_2_4_Lidar_SLAM_Trajectory_Evo_Usage_Experiment | ||
| + | </ | ||
| + | |||
| + | ------- | ||
| + | === Paper_8_repeatability_Experiment === | ||
| + | |||
| + | Explanation: | ||
| + | |||
| + | This analysis task is to compare the stability of a configuration. We run 20 times of one configuration. | ||
| + | |||
| + | 1 configuration with 20 times | ||
| + | totally: 20 | ||
| + | |||
| + | <file yaml> | ||
| + | configuration_choose: | ||
| + | comb_configuration_id: | ||
| + | combination_rule: | ||
| + | first_one: | ||
| + | - 0 | ||
| + | first_rule: | ||
| + | - U | ||
| + | second_one: | ||
| + | - 1 | ||
| + | - 2 | ||
| + | second_rule: | ||
| + | - I | ||
| + | configuration_id: | ||
| + | - 531 | ||
| + | limitation_rules: | ||
| + | algorithm_id: | ||
| + | dataset_id: null | ||
| + | evaluation_value: | ||
| + | ate_max_maximum: | ||
| + | ate_max_minimum: | ||
| + | ate_max_nolimitation: | ||
| + | ate_mean_maximum: | ||
| + | ate_mean_minimum: | ||
| + | ate_mean_nolimitation: | ||
| + | ate_median_maximum: | ||
| + | ate_median_minimum: | ||
| + | ate_median_nolimitation: | ||
| + | ate_min_maximum: | ||
| + | ate_min_minimum: | ||
| + | ate_min_nolimitation: | ||
| + | ate_rmse_maximum: | ||
| + | ate_rmse_minimum: | ||
| + | ate_rmse_nolimitation: | ||
| + | ate_sse_maximum: | ||
| + | ate_sse_minimum: | ||
| + | ate_sse_nolimitation: | ||
| + | ate_std_maximum: | ||
| + | ate_std_minimum: | ||
| + | ate_std_nolimitation: | ||
| + | cpu_max_maximum: | ||
| + | cpu_max_minimum: | ||
| + | cpu_max_nolimitation: | ||
| + | cpu_mean_maximum: | ||
| + | cpu_mean_minimum: | ||
| + | cpu_mean_nolimitation: | ||
| + | ram_max_maximum: | ||
| + | ram_max_minimum: | ||
| + | ram_max_nolimitation: | ||
| + | rpe_max_maximum: | ||
| + | rpe_max_minimum: | ||
| + | rpe_max_nolimitation: | ||
| + | rpe_mean_maximum: | ||
| + | rpe_mean_minimum: | ||
| + | rpe_mean_nolimitation: | ||
| + | rpe_median_maximum: | ||
| + | rpe_median_minimum: | ||
| + | rpe_median_nolimitation: | ||
| + | rpe_min_maximum: | ||
| + | rpe_min_minimum: | ||
| + | rpe_min_nolimitation: | ||
| + | rpe_rmse_maximum: | ||
| + | rpe_rmse_minimum: | ||
| + | rpe_rmse_nolimitation: | ||
| + | rpe_sse_maximum: | ||
| + | rpe_sse_minimum: | ||
| + | rpe_sse_nolimitation: | ||
| + | rpe_std_maximum: | ||
| + | rpe_std_minimum: | ||
| + | rpe_std_nolimitation: | ||
| + | parameters_value: | ||
| + | - nFeatures < 4000 | ||
| + | evaluation_form: | ||
| + | 1_trajectory_comparison: | ||
| + | choose: 0 | ||
| + | 2_accuracy_metrics_comparison: | ||
| + | choose: 0 | ||
| + | 3_accuracy_metrics_comparison: | ||
| + | algorithm_id: | ||
| + | - 12 | ||
| + | calculate_method: | ||
| + | choose: 0 | ||
| + | dataset_id: | ||
| + | - 2 | ||
| + | metric: ate_rmse | ||
| + | 4_usage_metrics_comparison: | ||
| + | choose: 0 | ||
| + | 5_scatter_diagram: | ||
| + | choose: 0 | ||
| + | x-axis: ate_mean | ||
| + | y-axis: cpu_mean | ||
| + | 6_scatter_diagram: | ||
| + | choose: 0 | ||
| + | x-axis: general+image_frequency | ||
| + | y-axis: ate_mean | ||
| + | 7_3d_scatter_diagram: | ||
| + | choose: 0 | ||
| + | x-axis: general+image_width | ||
| + | y-axis: general+imu_frequency | ||
| + | z-axis: ate_mean | ||
| + | 8_repeatability_test: | ||
| + | choose: 1 | ||
| + | metric: ate_rmse | ||
| + | algorithm_dataset_type: | ||
| + | group_description: | ||
| + | group_name: Paper_8_repeatability_Experiment | ||
| + | </ | ||
| + | |||
| + | ------ | ||
| + | |||
| + | |||
| + | |||
| + | === Paper_Vision_SLAM_Image_Exploration_Experiment_limitation === | ||
| + | |||
| + | Explanation: | ||
| + | This experiment explores how the quality of Image data (resolution and framerate) affects Visual-based SLAM algorithms. | ||
| + | We run 4 visual-based SLAM algorithms on different sequences of the EuRoC dataset and create 1500 configurations totall. The detail parameter space is shown in \ref{table: exploration3}. And in this experiment, the Extend metric parameters are: internal range: $[1, 0.75), [0.75, 0.5), [0.5, 0.25), [0.25, 0]$; multiple value: $[1, 2, 2.5, 3]$. | ||
| + | |||
| + | In the practical application of SLAM algorithm, it is often necessary to meet some specific scenarios, such as: limited computing resources, accuracy requirements, | ||
| + | Therefore, in order to analyze such a large number of tasks succinctly, we utilize our system search engine to performs a simple pre-process of the data - Filtering through these 1500 configurations using the conditions: $[0.02 \le ATE.Mean \le 0.1; 0.6 \le CPU.Mean \le 2.0; 600 \le Memory.Max \le 1000]$ results in 278 matching configurations, | ||
| + | |||
| + | Category: | ||
| + | orb-slam2-mono: | ||
| + | - 147 | ||
| + | - 148 | ||
| + | - 149 | ||
| + | - 150 | ||
| + | - 151 | ||
| + | orb-slam3-mono: | ||
| + | - 133 | ||
| + | - 134 | ||
| + | - 135 | ||
| + | - 136 | ||
| + | - 137 | ||
| + | |||
| + | |||
| + | orb-slam3-inertial: | ||
| + | - 128 | ||
| + | - 129 | ||
| + | - 130 | ||
| + | - 131 | ||
| + | - 132 | ||
| + | vins-mono: | ||
| + | - 152 | ||
| + | - 153 | ||
| + | - 154 | ||
| + | - 155 | ||
| + | - 156 | ||
| + | vins-fusion-mono-imu: | ||
| + | - 163 | ||
| + | - 164 | ||
| + | - 165 | ||
| + | - 166 | ||
| + | - 167 | ||
| + | |||
| + | orb-slam2-stereo: | ||
| + | - 141 | ||
| + | - 142 | ||
| + | - 143 | ||
| + | - 144 | ||
| + | - 145 | ||
| + | orb-slam3-stereo: | ||
| + | - 123 | ||
| + | - 124 | ||
| + | - 125 | ||
| + | - 126 | ||
| + | - 127 | ||
| + | vins-fusion-stereo: | ||
| + | - 169 | ||
| + | - 170 | ||
| + | - 171 | ||
| + | - 172 | ||
| + | - 173 | ||
| + | |||
| + | orb-slam3-stereo-inertial: | ||
| + | - 118 | ||
| + | - 119 | ||
| + | - 120 | ||
| + | - 121 | ||
| + | - 122 | ||
| + | vins-fusion-stereo-imu: | ||
| + | - 174 | ||
| + | - 175 | ||
| + | - 176 | ||
| + | - 177 | ||
| + | - 178 | ||
| + | |||
| + | <file yaml> | ||
| + | configuration_choose: | ||
| + | comb_configuration_id: | ||
| + | - 147 | ||
| + | - 148 | ||
| + | - 149 | ||
| + | - 150 | ||
| + | - 151 | ||
| + | - 141 | ||
| + | - 142 | ||
| + | - 143 | ||
| + | - 144 | ||
| + | - 145 | ||
| + | - 133 | ||
| + | - 134 | ||
| + | - 135 | ||
| + | - 136 | ||
| + | - 137 | ||
| + | - 128 | ||
| + | - 129 | ||
| + | - 130 | ||
| + | - 131 | ||
| + | - 132 | ||
| + | - 123 | ||
| + | - 124 | ||
| + | - 125 | ||
| + | - 126 | ||
| + | - 127 | ||
| + | - 118 | ||
| + | - 119 | ||
| + | - 120 | ||
| + | - 121 | ||
| + | - 122 | ||
| + | - 152 | ||
| + | - 153 | ||
| + | - 154 | ||
| + | - 155 | ||
| + | - 156 | ||
| + | - 163 | ||
| + | - 164 | ||
| + | - 165 | ||
| + | - 166 | ||
| + | - 167 | ||
| + | - 169 | ||
| + | - 170 | ||
| + | - 171 | ||
| + | - 172 | ||
| + | - 173 | ||
| + | - 174 | ||
| + | - 175 | ||
| + | - 176 | ||
| + | - 177 | ||
| + | - 178 | ||
| + | combination_rule: | ||
| + | first_one: | ||
| + | - 1 | ||
| + | - 2 | ||
| + | first_rule: | ||
| + | - I | ||
| + | second_one: | ||
| + | - 0 | ||
| + | second_rule: | ||
| + | - I | ||
| + | configuration_id: | ||
| + | limitation_rules: | ||
| + | algorithm_id: | ||
| + | - 2 | ||
| + | - 3 | ||
| + | - 5 | ||
| + | - 6 | ||
| + | - 7 | ||
| + | - 8 | ||
| + | - 9 | ||
| + | - 10 | ||
| + | - 11 | ||
| + | - 12 | ||
| + | dataset_id: | ||
| + | - 2 | ||
| + | - 3 | ||
| + | - 5 | ||
| + | - 6 | ||
| + | - 7 | ||
| + | evaluation_value: | ||
| + | ate_max_maximum: | ||
| + | ate_max_minimum: | ||
| + | ate_max_nolimitation: | ||
| + | ate_mean_maximum: | ||
| + | ate_mean_minimum: | ||
| + | ate_mean_nolimitation: | ||
| + | ate_median_maximum: | ||
| + | ate_median_minimum: | ||
| + | ate_median_nolimitation: | ||
| + | ate_min_maximum: | ||
| + | ate_min_minimum: | ||
| + | ate_min_nolimitation: | ||
| + | ate_rmse_maximum: | ||
| + | ate_rmse_minimum: | ||
| + | ate_rmse_nolimitation: | ||
| + | ate_sse_maximum: | ||
| + | ate_sse_minimum: | ||
| + | ate_sse_nolimitation: | ||
| + | ate_std_maximum: | ||
| + | ate_std_minimum: | ||
| + | ate_std_nolimitation: | ||
| + | cpu_max_maximum: | ||
| + | cpu_max_minimum: | ||
| + | cpu_max_nolimitation: | ||
| + | cpu_mean_maximum: | ||
| + | cpu_mean_minimum: | ||
| + | cpu_mean_nolimitation: | ||
| + | ram_max_maximum: | ||
| + | ram_max_minimum: | ||
| + | ram_max_nolimitation: | ||
| + | rpe_max_maximum: | ||
| + | rpe_max_minimum: | ||
| + | rpe_max_nolimitation: | ||
| + | rpe_mean_maximum: | ||
| + | rpe_mean_minimum: | ||
| + | rpe_mean_nolimitation: | ||
| + | rpe_median_maximum: | ||
| + | rpe_median_minimum: | ||
| + | rpe_median_nolimitation: | ||
| + | rpe_min_maximum: | ||
| + | rpe_min_minimum: | ||
| + | rpe_min_nolimitation: | ||
| + | rpe_rmse_maximum: | ||
| + | rpe_rmse_minimum: | ||
| + | rpe_rmse_nolimitation: | ||
| + | rpe_sse_maximum: | ||
| + | rpe_sse_minimum: | ||
| + | rpe_sse_nolimitation: | ||
| + | rpe_std_maximum: | ||
| + | rpe_std_minimum: | ||
| + | rpe_std_nolimitation: | ||
| + | parameters_value: | ||
| + | evaluation_form: | ||
| + | 1_trajectory_comparison: | ||
| + | choose: 0 | ||
| + | 2_accuracy_metrics_comparison: | ||
| + | choose: 0 | ||
| + | 3_accuracy_metrics_comparison: | ||
| + | algorithm_id: | ||
| + | - 12 | ||
| + | calculate_method: | ||
| + | choose: 0 | ||
| + | dataset_id: | ||
| + | - 2 | ||
| + | metric: ate_rmse | ||
| + | 4_usage_metrics_comparison: | ||
| + | choose: 0 | ||
| + | 5_scatter_diagram: | ||
| + | choose: 0 | ||
| + | x-axis: ate_mean | ||
| + | y-axis: cpu_mean | ||
| + | 6_scatter_diagram: | ||
| + | choose: 1 | ||
| + | extend_choose: | ||
| + | extend_multiple: | ||
| + | - 1 | ||
| + | - 2 | ||
| + | - 2.5 | ||
| + | - 3 | ||
| + | extend_threshold: | ||
| + | - 0.75 | ||
| + | - 0.5 | ||
| + | - 0.25 | ||
| + | x-axis: cpu_mean | ||
| + | y-axis: ate_mean | ||
| + | 7_3d_scatter_diagram: | ||
| + | choose: 1 | ||
| + | extend_choose: | ||
| + | extend_multiple: | ||
| + | - 1 | ||
| + | - 2 | ||
| + | - 2.5 | ||
| + | - 3 | ||
| + | extend_threshold: | ||
| + | - 0.75 | ||
| + | - 0.5 | ||
| + | - 0.25 | ||
| + | x-axis: general+image_width | ||
| + | y-axis: general+image_frequency | ||
| + | z-axis: ate_mean | ||
| + | 8_repeatability_test: | ||
| + | choose: 0 | ||
| + | metric: null | ||
| + | algorithm_dataset_type: | ||
| + | group_description: | ||
| + | 6 image resolution - totally 1500 configurations | ||
| + | group_name: Paper_Vision_SLAM_Image_Exploration_Experiment_limitation | ||
| </ | </ | ||
customanalysis/example.1721737374.txt.gz · Last modified: 2024/07/23 12:22 by liuxzh12023
