This is an old revision of the document!
This page shows some custom analysis examples that we have created.
Paper_Vision_SLAM_Image_Exploration_Experiment
Explanation:
This custom analysis task is to explore how the resolution and framerate of Image data affect the accuracy of Vision SLAM algorithms, and how to balance algorithm accuracy, resource consumption, and image data quality (resolution and framerate).
4 V-SLAM algorithms with different modes (totally 10 combination). 5 Image frame rate: 20Hz, 10Hz, 5Hz, 2Hz, 1Hz 6 Image Resolution: 1, 0.8, 0.6, 0.5, 0.4, 0.2 5 sequences of EuRoC Dataset Totally:1500 configurations
This task can generate static 2D and 3D scatter. And in the web page, you can see the static scatter, create the scatter using different metrics and parameters, download the raw data of these charts, and also see the dynamic scatter online.
configuration_choose: comb_configuration_id: # all the comb_configuration ID. Totally 50 groups. - 147 - 148 - 149 - 150 - 151 - 141 - 142 - 143 - 144 - 145 - 133 - 134 - 135 - 136 - 137 - 128 - 129 - 130 - 131 - 132 - 123 - 124 - 125 - 126 - 127 - 118 - 119 - 120 - 121 - 122 - 152 - 153 - 154 - 155 - 156 - 163 - 164 - 165 - 166 - 167 - 169 - 170 - 171 - 172 - 173 - 173 - 174 - 175 - 176 - 177 - 178 combination_rule: # config id - 0; comb config id - 1; limitation rules - 2; first_one: # (1) [-] (0 [Intersection] 2) (Actually Using all configs in 1) - 1 first_rule: - U second_one: - 0 - 2 second_rule: - I configuration_id: [] limitation_rules: algorithm_id: null dataset_id: null evaluation_value: ate_max_maximun: null ate_max_minimum: null ate_max_nolimitation: 1 ate_mean_maximun: null ate_mean_minimum: null ate_mean_nolimitation: 1 ate_median_maximun: null ate_median_minimum: null ate_median_nolimitation: 1 ate_min_maximun: null ate_min_minimum: null ate_min_nolimitation: 1 ate_rmse_maximun: null ate_rmse_minimum: null ate_rmse_nolimitation: 1 ate_sse_maximun: null ate_sse_minimum: null ate_sse_nolimitation: 1 ate_std_maximun: null ate_std_minimum: null ate_std_nolimitation: 1 cpu_max_maximun: null cpu_max_minimum: null cpu_max_nolimitation: 1 cpu_mean_maximun: null cpu_mean_minimum: null cpu_mean_nolimitation: 1 ram_max_maximun: null ram_max_minimum: null ram_max_nolimitation: 1 rpe_max_maximun: null rpe_max_minimum: null rpe_max_nolimitation: 1 rpe_mean_maximun: null rpe_mean_minimum: null rpe_mean_nolimitation: 1 rpe_median_maximun: null rpe_median_minimum: null rpe_median_nolimitation: 1 rpe_min_maximun: null rpe_min_minimum: null rpe_min_nolimitation: 1 rpe_rmse_maximun: null rpe_rmse_minimum: null rpe_rmse_nolimitation: 1 rpe_sse_maximun: null rpe_sse_minimum: null rpe_sse_nolimitation: 1 rpe_std_maximun: null rpe_std_minimum: null rpe_std_nolimitation: 1 parameters_value: evaluation_form: 1_trajectory_comparison: choose: 0 2_accuracy_metrics_comparison: choose: 0 3_accuracy_metrics_comparison: algorithm_id: - 12 calculate_method: 1 choose: 0 dataset_id: - 2 metric: ate_rmse 4_usage_metrics_comparison: choose: 0 5_scatter_diagram: choose: 0 x-axis: ate_mean y-axis: cpu_mean 6_scatter_diagram: # choose this choose: 1 extend_choose: 1 # choose Extend-Evo metrics extend_multiple: # the multiple by which the different inervals increase the origin value - 1 - 2 - 5 - 10 extend_threshold: # set the inervals - [1, 0.75) [0.75, 0.5) [0.5, 0.25) [0.25, 0] - 0.75 - 0.5 - 0.25 x-axis: cpu_mean # x axis y-axis: ate_mean # y axis 7_3d_scatter_diagram: # choose this choose: 1 extend_choose: 1 # same as 6_scatter_diagram extend_multiple: - 1 - 2 - 5 - 10 extend_threshold: - 0.75 - 0.5 - 0.25 x-axis: general+image_width y-axis: general+image_frequency z-axis: ate_mean 8_repeatability_test: choose: 0 metric: null algorithm_dataset_type: 3 group_description: 10 modes of 4 vision algorithm on 5 sequences; 5 image rate and 6 image resolution - totally 1500 configurations group_name: Paper_Vision_SLAM_Image_Exploration_Experiment