customanalysis:example
Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
customanalysis:example [2024/07/23 12:21] – created liuxzh12023 | customanalysis:example [2024/07/29 11:19] (current) – liuxzh12023 | ||
---|---|---|---|
Line 1: | Line 1: | ||
This page shows some custom analysis examples that we have created. | This page shows some custom analysis examples that we have created. | ||
- | === === | + | === Paper_Vision_SLAM_Image_Exploration_Experiment |
+ | Explanation: | ||
+ | |||
+ | This custom analysis task is to explore how the resolution and framerate of Image data affect the accuracy of Vision SLAM algorithms, and how to balance algorithm accuracy, resource consumption, | ||
+ | |||
+ | 4 V-SLAM algorithms with different modes (totally 10 combination). | ||
+ | 5 Image frame rate: 20Hz, 10Hz, 5Hz, 2Hz, 1Hz | ||
+ | 6 Image Resolution: 1, 0.8, 0.6, 0.5, 0.4, 0.2 | ||
+ | 5 sequences of EuRoC Dataset | ||
+ | Totally: | ||
+ | |||
+ | This task can generate static 2D and 3D scatter. And in the web page, you can see the static scatter, create the scatter using different metrics and parameters, download the raw data of these charts, and also see the dynamic scatter online. | ||
+ | |||
+ | <file yaml> | ||
+ | configuration_choose: | ||
+ | comb_configuration_id: | ||
+ | - 147 | ||
+ | - 148 | ||
+ | - 149 | ||
+ | - 150 | ||
+ | - 151 | ||
+ | - 141 | ||
+ | - 142 | ||
+ | - 143 | ||
+ | - 144 | ||
+ | - 145 | ||
+ | - 133 | ||
+ | - 134 | ||
+ | - 135 | ||
+ | - 136 | ||
+ | - 137 | ||
+ | - 128 | ||
+ | - 129 | ||
+ | - 130 | ||
+ | - 131 | ||
+ | - 132 | ||
+ | - 123 | ||
+ | - 124 | ||
+ | - 125 | ||
+ | - 126 | ||
+ | - 127 | ||
+ | - 118 | ||
+ | - 119 | ||
+ | - 120 | ||
+ | - 121 | ||
+ | - 122 | ||
+ | - 152 | ||
+ | - 153 | ||
+ | - 154 | ||
+ | - 155 | ||
+ | - 156 | ||
+ | - 163 | ||
+ | - 164 | ||
+ | - 165 | ||
+ | - 166 | ||
+ | - 167 | ||
+ | - 169 | ||
+ | - 170 | ||
+ | - 171 | ||
+ | - 172 | ||
+ | - 173 | ||
+ | - 173 | ||
+ | - 174 | ||
+ | - 175 | ||
+ | - 176 | ||
+ | - 177 | ||
+ | - 178 | ||
+ | combination_rule: | ||
+ | first_one: # (1) [-] (0 [Intersection] 2) (Actually Using all configs in 1) | ||
+ | - 1 | ||
+ | first_rule: | ||
+ | - U | ||
+ | second_one: | ||
+ | - 0 | ||
+ | - 2 | ||
+ | second_rule: | ||
+ | - I | ||
+ | configuration_id: | ||
+ | limitation_rules: | ||
+ | algorithm_id: | ||
+ | dataset_id: null | ||
+ | evaluation_value: | ||
+ | ate_max_maximum: | ||
+ | ate_max_minimum: | ||
+ | ate_max_nolimitation: | ||
+ | ate_mean_maximum: | ||
+ | ate_mean_minimum: | ||
+ | ate_mean_nolimitation: | ||
+ | ate_median_maximum: | ||
+ | ate_median_minimum: | ||
+ | ate_median_nolimitation: | ||
+ | ate_min_maximum: | ||
+ | ate_min_minimum: | ||
+ | ate_min_nolimitation: | ||
+ | ate_rmse_maximum: | ||
+ | ate_rmse_minimum: | ||
+ | ate_rmse_nolimitation: | ||
+ | ate_sse_maximum: | ||
+ | ate_sse_minimum: | ||
+ | ate_sse_nolimitation: | ||
+ | ate_std_maximum: | ||
+ | ate_std_minimum: | ||
+ | ate_std_nolimitation: | ||
+ | cpu_max_maximum: | ||
+ | cpu_max_minimum: | ||
+ | cpu_max_nolimitation: | ||
+ | cpu_mean_maximum: | ||
+ | cpu_mean_minimum: | ||
+ | cpu_mean_nolimitation: | ||
+ | ram_max_maximum: | ||
+ | ram_max_minimum: | ||
+ | ram_max_nolimitation: | ||
+ | rpe_max_maximum: | ||
+ | rpe_max_minimum: | ||
+ | rpe_max_nolimitation: | ||
+ | rpe_mean_maximum: | ||
+ | rpe_mean_minimum: | ||
+ | rpe_mean_nolimitation: | ||
+ | rpe_median_maximum: | ||
+ | rpe_median_minimum: | ||
+ | rpe_median_nolimitation: | ||
+ | rpe_min_maximum: | ||
+ | rpe_min_minimum: | ||
+ | rpe_min_nolimitation: | ||
+ | rpe_rmse_maximum: | ||
+ | rpe_rmse_minimum: | ||
+ | rpe_rmse_nolimitation: | ||
+ | rpe_sse_maximum: | ||
+ | rpe_sse_minimum: | ||
+ | rpe_sse_nolimitation: | ||
+ | rpe_std_maximum: | ||
+ | rpe_std_minimum: | ||
+ | rpe_std_nolimitation: | ||
+ | parameters_value: | ||
+ | evaluation_form: | ||
+ | 1_trajectory_comparison: | ||
+ | choose: 0 | ||
+ | 2_accuracy_metrics_comparison: | ||
+ | choose: 0 | ||
+ | 3_accuracy_metrics_comparison: | ||
+ | algorithm_id: | ||
+ | - 12 | ||
+ | calculate_method: | ||
+ | choose: 0 | ||
+ | dataset_id: | ||
+ | - 2 | ||
+ | metric: ate_rmse | ||
+ | 4_usage_metrics_comparison: | ||
+ | choose: 0 | ||
+ | 5_scatter_diagram: | ||
+ | choose: 0 | ||
+ | x-axis: ate_mean | ||
+ | y-axis: cpu_mean | ||
+ | 6_scatter_diagram: | ||
+ | choose: 1 | ||
+ | extend_choose: | ||
+ | extend_multiple: | ||
+ | - 1 | ||
+ | - 2 | ||
+ | - 5 | ||
+ | - 10 | ||
+ | extend_threshold: | ||
+ | - 0.75 | ||
+ | - 0.5 | ||
+ | - 0.25 | ||
+ | x-axis: cpu_mean # x axis | ||
+ | y-axis: ate_mean # y axis | ||
+ | 7_3d_scatter_diagram: | ||
+ | choose: 1 | ||
+ | extend_choose: | ||
+ | extend_multiple: | ||
+ | - 1 | ||
+ | - 2 | ||
+ | - 5 | ||
+ | - 10 | ||
+ | extend_threshold: | ||
+ | - 0.75 | ||
+ | - 0.5 | ||
+ | - 0.25 | ||
+ | x-axis: general+image_width | ||
+ | y-axis: general+image_frequency | ||
+ | z-axis: ate_mean | ||
+ | 8_repeatability_test: | ||
+ | choose: 0 | ||
+ | metric: null | ||
+ | algorithm_dataset_type: | ||
+ | group_description: | ||
+ | 6 image resolution - totally 1500 configurations | ||
+ | group_name: Paper_Vision_SLAM_Image_Exploration_Experiment | ||
+ | </ | ||
+ | |||
+ | ------ | ||
+ | |||
+ | |||
+ | === Paper_3_accuracy_metrics_comparison_ATE_RMSE_Experiment === | ||
+ | |||
+ | Explanation: | ||
+ | |||
+ | This analysis task is to calculate the metric of some configurations | ||
+ | |||
+ | 10 modes | ||
+ | 5 dataset sequences | ||
+ | totally: 50 | ||
+ | |||
+ | This YAML file's metric is "ATE RMSE", you can also change to select other metrics. | ||
+ | |||
+ | <file yaml> | ||
+ | configuration_choose: | ||
+ | comb_configuration_id: | ||
+ | combination_rule: | ||
+ | first_one: | ||
+ | - 0 | ||
+ | first_rule: | ||
+ | - I | ||
+ | second_one: | ||
+ | - 2 | ||
+ | - 1 | ||
+ | second_rule: | ||
+ | - U | ||
+ | configuration_id: | ||
+ | - 274 | ||
+ | - 275 | ||
+ | - 276 | ||
+ | - 277 | ||
+ | - 278 | ||
+ | - 279 | ||
+ | - 282 | ||
+ | - 285 | ||
+ | - 287 | ||
+ | - 288 | ||
+ | - 706 | ||
+ | - 1735 | ||
+ | - 1585 | ||
+ | - 722 | ||
+ | - 754 | ||
+ | - 762 | ||
+ | - 1885 | ||
+ | - 2040 | ||
+ | - 2190 | ||
+ | - 2340 | ||
+ | - 1765 | ||
+ | - 1615 | ||
+ | - 778 | ||
+ | - 794 | ||
+ | - 826 | ||
+ | - 834 | ||
+ | - 1915 | ||
+ | - 2070 | ||
+ | - 2220 | ||
+ | - 2370 | ||
+ | - 1795 | ||
+ | - 1645 | ||
+ | - 850 | ||
+ | - 866 | ||
+ | - 882 | ||
+ | - 890 | ||
+ | - 1945 | ||
+ | - 2100 | ||
+ | - 2250 | ||
+ | - 2400 | ||
+ | - 1825 | ||
+ | - 1675 | ||
+ | - 906 | ||
+ | - 978 | ||
+ | - 954 | ||
+ | - 962 | ||
+ | - 1975 | ||
+ | - 2130 | ||
+ | - 2280 | ||
+ | - 2430 | ||
+ | limitation_rules: | ||
+ | algorithm_id: | ||
+ | dataset_id: null | ||
+ | evaluation_value: | ||
+ | ate_max_maximum: | ||
+ | ate_max_minimum: | ||
+ | ate_max_nolimitation: | ||
+ | ate_mean_maximum: | ||
+ | ate_mean_minimum: | ||
+ | ate_mean_nolimitation: | ||
+ | ate_median_maximum: | ||
+ | ate_median_minimum: | ||
+ | ate_median_nolimitation: | ||
+ | ate_min_maximum: | ||
+ | ate_min_minimum: | ||
+ | ate_min_nolimitation: | ||
+ | ate_rmse_maximum: | ||
+ | ate_rmse_minimum: | ||
+ | ate_rmse_nolimitation: | ||
+ | ate_sse_maximum: | ||
+ | ate_sse_minimum: | ||
+ | ate_sse_nolimitation: | ||
+ | ate_std_maximum: | ||
+ | ate_std_minimum: | ||
+ | ate_std_nolimitation: | ||
+ | cpu_max_maximum: | ||
+ | cpu_max_minimum: | ||
+ | cpu_max_nolimitation: | ||
+ | cpu_mean_maximum: | ||
+ | cpu_mean_minimum: | ||
+ | cpu_mean_nolimitation: | ||
+ | ram_max_maximum: | ||
+ | ram_max_minimum: | ||
+ | ram_max_nolimitation: | ||
+ | rpe_max_maximum: | ||
+ | rpe_max_minimum: | ||
+ | rpe_max_nolimitation: | ||
+ | rpe_mean_maximum: | ||
+ | rpe_mean_minimum: | ||
+ | rpe_mean_nolimitation: | ||
+ | rpe_median_maximum: | ||
+ | rpe_median_minimum: | ||
+ | rpe_median_nolimitation: | ||
+ | rpe_min_maximum: | ||
+ | rpe_min_minimum: | ||
+ | rpe_min_nolimitation: | ||
+ | rpe_rmse_maximum: | ||
+ | rpe_rmse_minimum: | ||
+ | rpe_rmse_nolimitation: | ||
+ | rpe_sse_maximum: | ||
+ | rpe_sse_minimum: | ||
+ | rpe_sse_nolimitation: | ||
+ | rpe_std_maximum: | ||
+ | rpe_std_minimum: | ||
+ | rpe_std_nolimitation: | ||
+ | parameters_value: | ||
+ | evaluation_form: | ||
+ | 1_trajectory_comparison: | ||
+ | choose: 0 | ||
+ | 2_accuracy_metrics_comparison: | ||
+ | choose: 0 | ||
+ | 3_accuracy_metrics_comparison: | ||
+ | algorithm_id: | ||
+ | - 2 | ||
+ | - 3 | ||
+ | - 5 | ||
+ | - 6 | ||
+ | - 7 | ||
+ | - 8 | ||
+ | - 9 | ||
+ | - 10 | ||
+ | - 11 | ||
+ | - 12 | ||
+ | calculate_method: | ||
+ | choose: 1 | ||
+ | dataset_id: | ||
+ | - 2 | ||
+ | - 3 | ||
+ | - 5 | ||
+ | - 6 | ||
+ | - 7 | ||
+ | metric: ate_rmse # change here to change metric | ||
+ | 4_usage_metrics_comparison: | ||
+ | choose: 0 | ||
+ | 5_scatter_diagram: | ||
+ | choose: 0 | ||
+ | x-axis: ate_mean | ||
+ | y-axis: cpu_mean | ||
+ | 6_scatter_diagram: | ||
+ | choose: 0 | ||
+ | x-axis: null | ||
+ | y-axis: null | ||
+ | 7_3d_scatter_diagram: | ||
+ | choose: 0 | ||
+ | x-axis: general+image_width | ||
+ | y-axis: general+imu_frequency | ||
+ | 8_repeatability_test: | ||
+ | choose: 0 | ||
+ | metric: ate_mean | ||
+ | algorithm_dataset_type: | ||
+ | group_description: | ||
+ | group_name: Paper_3_accuracy_metrics_comparison_ATE_RMSE_Experiment | ||
+ | </ | ||
+ | |||
+ | ------ | ||
+ | |||
+ | === Paper_1_2_4_Lidar_SLAM_Trajectory_Evo_Usage_Experiment === | ||
+ | |||
+ | Explanation: | ||
+ | |||
+ | This analysis task is to compare some Lidar based SLAM algorithms in trajectory, Evo metrics and CPU and RAM usage. | ||
+ | |||
+ | 6 modes | ||
+ | 1 dataset sequences | ||
+ | totally: 6 | ||
+ | |||
+ | note: 1) Don't select too many configurations to draw them in one diagram. 2) If your selected configurations contain failed trajectories, | ||
+ | <file yaml> | ||
+ | configuration_choose: | ||
+ | comb_configuration_id: | ||
+ | - 5 | ||
+ | combination_rule: | ||
+ | first_one: | ||
+ | - 0 | ||
+ | first_rule: | ||
+ | - I | ||
+ | second_one: | ||
+ | - 2 | ||
+ | - 1 | ||
+ | second_rule: | ||
+ | - I | ||
+ | configuration_id: | ||
+ | |||
+ | limitation_rules: | ||
+ | algorithm_id: | ||
+ | - 12 | ||
+ | - 11 | ||
+ | - 10 | ||
+ | dataset_id: | ||
+ | - 15 | ||
+ | evaluation_value: | ||
+ | ate_max_maximum: | ||
+ | ate_max_minimum: | ||
+ | ate_max_nolimitation: | ||
+ | ate_mean_maximum: | ||
+ | ate_mean_minimum: | ||
+ | ate_mean_nolimitation: | ||
+ | ate_median_maximum: | ||
+ | ate_median_minimum: | ||
+ | ate_median_nolimitation: | ||
+ | ate_min_maximum: | ||
+ | ate_min_minimum: | ||
+ | ate_min_nolimitation: | ||
+ | ate_rmse_maximum: | ||
+ | ate_rmse_minimum: | ||
+ | ate_rmse_nolimitation: | ||
+ | ate_sse_maximum: | ||
+ | ate_sse_minimum: | ||
+ | ate_sse_nolimitation: | ||
+ | ate_std_maximum: | ||
+ | ate_std_minimum: | ||
+ | ate_std_nolimitation: | ||
+ | cpu_max_maximum: | ||
+ | cpu_max_minimum: | ||
+ | cpu_max_nolimitation: | ||
+ | cpu_mean_maximum: | ||
+ | cpu_mean_minimum: | ||
+ | cpu_mean_nolimitation: | ||
+ | ram_max_maximum: | ||
+ | ram_max_minimum: | ||
+ | ram_max_nolimitation: | ||
+ | rpe_max_maximum: | ||
+ | rpe_max_minimum: | ||
+ | rpe_max_nolimitation: | ||
+ | rpe_mean_maximum: | ||
+ | rpe_mean_minimum: | ||
+ | rpe_mean_nolimitation: | ||
+ | rpe_median_maximum: | ||
+ | rpe_median_minimum: | ||
+ | rpe_median_nolimitation: | ||
+ | rpe_min_maximum: | ||
+ | rpe_min_minimum: | ||
+ | rpe_min_nolimitation: | ||
+ | rpe_rmse_maximum: | ||
+ | rpe_rmse_minimum: | ||
+ | rpe_rmse_nolimitation: | ||
+ | rpe_sse_maximum: | ||
+ | rpe_sse_minimum: | ||
+ | rpe_sse_nolimitation: | ||
+ | rpe_std_maximum: | ||
+ | rpe_std_minimum: | ||
+ | rpe_std_nolimitation: | ||
+ | parameters_value: | ||
+ | - nFeatures < 4000 | ||
+ | evaluation_form: | ||
+ | 1_trajectory_comparison: | ||
+ | choose: 1 | ||
+ | 2_accuracy_metrics_comparison: | ||
+ | choose: 1 | ||
+ | 3_accuracy_metrics_comparison: | ||
+ | algorithm_id: | ||
+ | - 2 | ||
+ | - 5 | ||
+ | calculate_method: | ||
+ | choose: 0 | ||
+ | dataset_id: | ||
+ | - 2 | ||
+ | - 13 | ||
+ | metric: ate_rmse | ||
+ | 4_usage_metrics_comparison: | ||
+ | choose: 1 | ||
+ | 6_scatter_diagram: | ||
+ | choose: 0 | ||
+ | x-axis: cpu_mean | ||
+ | y-axis: ate_mean | ||
+ | 7_3d_scatter_diagram: | ||
+ | choose: 0 | ||
+ | x-axis: null | ||
+ | y-axis: null | ||
+ | z-axis: null | ||
+ | 8_repeatability_test: | ||
+ | choose: 0 | ||
+ | metric: null | ||
+ | algorithm_dataset_type: | ||
+ | group_description: | ||
+ | group_name: Paper_1_2_4_Lidar_SLAM_Trajectory_Evo_Usage_Experiment | ||
+ | </ | ||
+ | |||
+ | ------- | ||
+ | === Paper_8_repeatability_Experiment === | ||
+ | |||
+ | Explanation: | ||
+ | |||
+ | This analysis task is to compare the stability of a configuration. We run 20 times of one configuration. | ||
+ | |||
+ | 1 configuration with 20 times | ||
+ | totally: 20 | ||
+ | |||
+ | <file yaml> | ||
+ | configuration_choose: | ||
+ | comb_configuration_id: | ||
+ | combination_rule: | ||
+ | first_one: | ||
+ | - 0 | ||
+ | first_rule: | ||
+ | - U | ||
+ | second_one: | ||
+ | - 1 | ||
+ | - 2 | ||
+ | second_rule: | ||
+ | - I | ||
+ | configuration_id: | ||
+ | - 531 | ||
+ | limitation_rules: | ||
+ | algorithm_id: | ||
+ | dataset_id: null | ||
+ | evaluation_value: | ||
+ | ate_max_maximum: | ||
+ | ate_max_minimum: | ||
+ | ate_max_nolimitation: | ||
+ | ate_mean_maximum: | ||
+ | ate_mean_minimum: | ||
+ | ate_mean_nolimitation: | ||
+ | ate_median_maximum: | ||
+ | ate_median_minimum: | ||
+ | ate_median_nolimitation: | ||
+ | ate_min_maximum: | ||
+ | ate_min_minimum: | ||
+ | ate_min_nolimitation: | ||
+ | ate_rmse_maximum: | ||
+ | ate_rmse_minimum: | ||
+ | ate_rmse_nolimitation: | ||
+ | ate_sse_maximum: | ||
+ | ate_sse_minimum: | ||
+ | ate_sse_nolimitation: | ||
+ | ate_std_maximum: | ||
+ | ate_std_minimum: | ||
+ | ate_std_nolimitation: | ||
+ | cpu_max_maximum: | ||
+ | cpu_max_minimum: | ||
+ | cpu_max_nolimitation: | ||
+ | cpu_mean_maximum: | ||
+ | cpu_mean_minimum: | ||
+ | cpu_mean_nolimitation: | ||
+ | ram_max_maximum: | ||
+ | ram_max_minimum: | ||
+ | ram_max_nolimitation: | ||
+ | rpe_max_maximum: | ||
+ | rpe_max_minimum: | ||
+ | rpe_max_nolimitation: | ||
+ | rpe_mean_maximum: | ||
+ | rpe_mean_minimum: | ||
+ | rpe_mean_nolimitation: | ||
+ | rpe_median_maximum: | ||
+ | rpe_median_minimum: | ||
+ | rpe_median_nolimitation: | ||
+ | rpe_min_maximum: | ||
+ | rpe_min_minimum: | ||
+ | rpe_min_nolimitation: | ||
+ | rpe_rmse_maximum: | ||
+ | rpe_rmse_minimum: | ||
+ | rpe_rmse_nolimitation: | ||
+ | rpe_sse_maximum: | ||
+ | rpe_sse_minimum: | ||
+ | rpe_sse_nolimitation: | ||
+ | rpe_std_maximum: | ||
+ | rpe_std_minimum: | ||
+ | rpe_std_nolimitation: | ||
+ | parameters_value: | ||
+ | - nFeatures < 4000 | ||
+ | evaluation_form: | ||
+ | 1_trajectory_comparison: | ||
+ | choose: 0 | ||
+ | 2_accuracy_metrics_comparison: | ||
+ | choose: 0 | ||
+ | 3_accuracy_metrics_comparison: | ||
+ | algorithm_id: | ||
+ | - 12 | ||
+ | calculate_method: | ||
+ | choose: 0 | ||
+ | dataset_id: | ||
+ | - 2 | ||
+ | metric: ate_rmse | ||
+ | 4_usage_metrics_comparison: | ||
+ | choose: 0 | ||
+ | 5_scatter_diagram: | ||
+ | choose: 0 | ||
+ | x-axis: ate_mean | ||
+ | y-axis: cpu_mean | ||
+ | 6_scatter_diagram: | ||
+ | choose: 0 | ||
+ | x-axis: general+image_frequency | ||
+ | y-axis: ate_mean | ||
+ | 7_3d_scatter_diagram: | ||
+ | choose: 0 | ||
+ | x-axis: general+image_width | ||
+ | y-axis: general+imu_frequency | ||
+ | z-axis: ate_mean | ||
+ | 8_repeatability_test: | ||
+ | choose: 1 | ||
+ | metric: ate_rmse | ||
+ | algorithm_dataset_type: | ||
+ | group_description: | ||
+ | group_name: Paper_8_repeatability_Experiment | ||
+ | </ | ||
+ | |||
+ | ------ | ||
+ | |||
+ | |||
+ | |||
+ | === Paper_Vision_SLAM_Image_Exploration_Experiment_limitation === | ||
+ | |||
+ | Explanation: | ||
+ | This experiment explores how the quality of Image data (resolution and framerate) affects Visual-based SLAM algorithms. | ||
+ | We run 4 visual-based SLAM algorithms on different sequences of the EuRoC dataset and create 1500 configurations totall. The detail parameter space is shown in \ref{table: exploration3}. And in this experiment, the Extend metric parameters are: internal range: $[1, 0.75), [0.75, 0.5), [0.5, 0.25), [0.25, 0]$; multiple value: $[1, 2, 2.5, 3]$. | ||
+ | |||
+ | In the practical application of SLAM algorithm, it is often necessary to meet some specific scenarios, such as: limited computing resources, accuracy requirements, | ||
+ | Therefore, in order to analyze such a large number of tasks succinctly, we utilize our system search engine to performs a simple pre-process of the data - Filtering through these 1500 configurations using the conditions: $[0.02 \le ATE.Mean \le 0.1; 0.6 \le CPU.Mean \le 2.0; 600 \le Memory.Max \le 1000]$ results in 278 matching configurations, | ||
+ | |||
+ | Category: | ||
+ | orb-slam2-mono: | ||
+ | - 147 | ||
+ | - 148 | ||
+ | - 149 | ||
+ | - 150 | ||
+ | - 151 | ||
+ | orb-slam3-mono: | ||
+ | - 133 | ||
+ | - 134 | ||
+ | - 135 | ||
+ | - 136 | ||
+ | - 137 | ||
+ | |||
+ | |||
+ | orb-slam3-inertial: | ||
+ | - 128 | ||
+ | - 129 | ||
+ | - 130 | ||
+ | - 131 | ||
+ | - 132 | ||
+ | vins-mono: | ||
+ | - 152 | ||
+ | - 153 | ||
+ | - 154 | ||
+ | - 155 | ||
+ | - 156 | ||
+ | vins-fusion-mono-imu: | ||
+ | - 163 | ||
+ | - 164 | ||
+ | - 165 | ||
+ | - 166 | ||
+ | - 167 | ||
+ | |||
+ | orb-slam2-stereo: | ||
+ | - 141 | ||
+ | - 142 | ||
+ | - 143 | ||
+ | - 144 | ||
+ | - 145 | ||
+ | orb-slam3-stereo: | ||
+ | - 123 | ||
+ | - 124 | ||
+ | - 125 | ||
+ | - 126 | ||
+ | - 127 | ||
+ | vins-fusion-stereo: | ||
+ | - 169 | ||
+ | - 170 | ||
+ | - 171 | ||
+ | - 172 | ||
+ | - 173 | ||
+ | |||
+ | orb-slam3-stereo-inertial: | ||
+ | - 118 | ||
+ | - 119 | ||
+ | - 120 | ||
+ | - 121 | ||
+ | - 122 | ||
+ | vins-fusion-stereo-imu: | ||
+ | - 174 | ||
+ | - 175 | ||
+ | - 176 | ||
+ | - 177 | ||
+ | - 178 | ||
+ | |||
+ | <file yaml> | ||
+ | configuration_choose: | ||
+ | comb_configuration_id: | ||
+ | - 147 | ||
+ | - 148 | ||
+ | - 149 | ||
+ | - 150 | ||
+ | - 151 | ||
+ | - 141 | ||
+ | - 142 | ||
+ | - 143 | ||
+ | - 144 | ||
+ | - 145 | ||
+ | - 133 | ||
+ | - 134 | ||
+ | - 135 | ||
+ | - 136 | ||
+ | - 137 | ||
+ | - 128 | ||
+ | - 129 | ||
+ | - 130 | ||
+ | - 131 | ||
+ | - 132 | ||
+ | - 123 | ||
+ | - 124 | ||
+ | - 125 | ||
+ | - 126 | ||
+ | - 127 | ||
+ | - 118 | ||
+ | - 119 | ||
+ | - 120 | ||
+ | - 121 | ||
+ | - 122 | ||
+ | - 152 | ||
+ | - 153 | ||
+ | - 154 | ||
+ | - 155 | ||
+ | - 156 | ||
+ | - 163 | ||
+ | - 164 | ||
+ | - 165 | ||
+ | - 166 | ||
+ | - 167 | ||
+ | - 169 | ||
+ | - 170 | ||
+ | - 171 | ||
+ | - 172 | ||
+ | - 173 | ||
+ | - 174 | ||
+ | - 175 | ||
+ | - 176 | ||
+ | - 177 | ||
+ | - 178 | ||
+ | combination_rule: | ||
+ | first_one: | ||
+ | - 1 | ||
+ | - 2 | ||
+ | first_rule: | ||
+ | - I | ||
+ | second_one: | ||
+ | - 0 | ||
+ | second_rule: | ||
+ | - I | ||
+ | configuration_id: | ||
+ | limitation_rules: | ||
+ | algorithm_id: | ||
+ | - 2 | ||
+ | - 3 | ||
+ | - 5 | ||
+ | - 6 | ||
+ | - 7 | ||
+ | - 8 | ||
+ | - 9 | ||
+ | - 10 | ||
+ | - 11 | ||
+ | - 12 | ||
+ | dataset_id: | ||
+ | - 2 | ||
+ | - 3 | ||
+ | - 5 | ||
+ | - 6 | ||
+ | - 7 | ||
+ | evaluation_value: | ||
+ | ate_max_maximum: | ||
+ | ate_max_minimum: | ||
+ | ate_max_nolimitation: | ||
+ | ate_mean_maximum: | ||
+ | ate_mean_minimum: | ||
+ | ate_mean_nolimitation: | ||
+ | ate_median_maximum: | ||
+ | ate_median_minimum: | ||
+ | ate_median_nolimitation: | ||
+ | ate_min_maximum: | ||
+ | ate_min_minimum: | ||
+ | ate_min_nolimitation: | ||
+ | ate_rmse_maximum: | ||
+ | ate_rmse_minimum: | ||
+ | ate_rmse_nolimitation: | ||
+ | ate_sse_maximum: | ||
+ | ate_sse_minimum: | ||
+ | ate_sse_nolimitation: | ||
+ | ate_std_maximum: | ||
+ | ate_std_minimum: | ||
+ | ate_std_nolimitation: | ||
+ | cpu_max_maximum: | ||
+ | cpu_max_minimum: | ||
+ | cpu_max_nolimitation: | ||
+ | cpu_mean_maximum: | ||
+ | cpu_mean_minimum: | ||
+ | cpu_mean_nolimitation: | ||
+ | ram_max_maximum: | ||
+ | ram_max_minimum: | ||
+ | ram_max_nolimitation: | ||
+ | rpe_max_maximum: | ||
+ | rpe_max_minimum: | ||
+ | rpe_max_nolimitation: | ||
+ | rpe_mean_maximum: | ||
+ | rpe_mean_minimum: | ||
+ | rpe_mean_nolimitation: | ||
+ | rpe_median_maximum: | ||
+ | rpe_median_minimum: | ||
+ | rpe_median_nolimitation: | ||
+ | rpe_min_maximum: | ||
+ | rpe_min_minimum: | ||
+ | rpe_min_nolimitation: | ||
+ | rpe_rmse_maximum: | ||
+ | rpe_rmse_minimum: | ||
+ | rpe_rmse_nolimitation: | ||
+ | rpe_sse_maximum: | ||
+ | rpe_sse_minimum: | ||
+ | rpe_sse_nolimitation: | ||
+ | rpe_std_maximum: | ||
+ | rpe_std_minimum: | ||
+ | rpe_std_nolimitation: | ||
+ | parameters_value: | ||
+ | evaluation_form: | ||
+ | 1_trajectory_comparison: | ||
+ | choose: 0 | ||
+ | 2_accuracy_metrics_comparison: | ||
+ | choose: 0 | ||
+ | 3_accuracy_metrics_comparison: | ||
+ | algorithm_id: | ||
+ | - 12 | ||
+ | calculate_method: | ||
+ | choose: 0 | ||
+ | dataset_id: | ||
+ | - 2 | ||
+ | metric: ate_rmse | ||
+ | 4_usage_metrics_comparison: | ||
+ | choose: 0 | ||
+ | 5_scatter_diagram: | ||
+ | choose: 0 | ||
+ | x-axis: ate_mean | ||
+ | y-axis: cpu_mean | ||
+ | 6_scatter_diagram: | ||
+ | choose: 1 | ||
+ | extend_choose: | ||
+ | extend_multiple: | ||
+ | - 1 | ||
+ | - 2 | ||
+ | - 2.5 | ||
+ | - 3 | ||
+ | extend_threshold: | ||
+ | - 0.75 | ||
+ | - 0.5 | ||
+ | - 0.25 | ||
+ | x-axis: cpu_mean | ||
+ | y-axis: ate_mean | ||
+ | 7_3d_scatter_diagram: | ||
+ | choose: 1 | ||
+ | extend_choose: | ||
+ | extend_multiple: | ||
+ | - 1 | ||
+ | - 2 | ||
+ | - 2.5 | ||
+ | - 3 | ||
+ | extend_threshold: | ||
+ | - 0.75 | ||
+ | - 0.5 | ||
+ | - 0.25 | ||
+ | x-axis: general+image_width | ||
+ | y-axis: general+image_frequency | ||
+ | z-axis: ate_mean | ||
+ | 8_repeatability_test: | ||
+ | choose: 0 | ||
+ | metric: null | ||
+ | algorithm_dataset_type: | ||
+ | group_description: | ||
+ | 6 image resolution - totally 1500 configurations | ||
+ | group_name: Paper_Vision_SLAM_Image_Exploration_Experiment_limitation | ||
+ | </ |
customanalysis/example.1721737289.txt.gz · Last modified: 2024/07/23 12:21 by liuxzh12023